AchmadBagus Krishna N Blognya Anak Kembar
ο»Ώ- Berikut ini kunci jawaban soal latihan soal Ujian Akhir Semester UAS dan Penilaian Akhir Semester PAS mata pelajaran Matematika kelas 7 SMP semester ganjil. Jawaban dan soal yang dibahas hanyalah sebagai latihan dan referensi bahan belajar bagi siswa, guru, dan orang tua dalam membimbing anak-anak peserta didik. Soal Matematika Kelas 7 SMP Semester Ganjil A. Berilah Tanda Silang X Pada Huruf A, B, C atau D pada jawaban yang benar. 1. Suhu mula-mula di ruang freezer adalah 21oC. Setelah alat pendingin di freezer itu dihidupkan, suhunya menjadi -6oC. Besar penurunan suhu di ruang tersebut adalah ... A. -27 oC C. 15 oC B. -15 oC D. 27 oC 2. Dari pernyataan-pernyataan berikut i -2 -9 iii 12 6/7 iii 5/8 >>>KUNCI JAWABAN SOAL BUKU TEMATIK TEMA SD TEMA 4 KELAS 3 * KUNCI JAWABAN PILIHAN GANDA 1. D 11. A 21. B 31. C 2. A 12. D 22. D 32. B 3. D 13. C 23. D 33. B 4. C 14. A 24. A 34. C 5. B 15. B 25. C 35. D 6. D 16. B 26. A 7. D 17. A 27. B 8. A 18. A 28. B 9. B 19. B 29. D 10. C 20 B 30. A * KUNCI JAWABAN SOAL URAIAN II. URAIAN 36. 8/9-1/3 x 6/7 6/14 = 8-3/9 x 6/7 x 14/6 = 5/9x2 = 10/9 = 1 1/9 37. Kolam ikan = 1/3Γ360 = 120m2 Tanaman obat =1/4 Γ360 = 90m 2 Taman = 360 β 120 β 90 = 150m2 38. Diagram venn ISTIMEWA P βͺ Q = { 1, 2, 3, 5, 7, 9} 39. 6a + 7b β 3a β 3b = 6a β 3a + 7b β 3b = 3a + 4b 40. 5x β 2 = x + 14 5x β 10 = x + 14 5x β x = 14 + 10 4x = 24 x = 4 24 x = 6 *Sumber *Disclaimer Jawaban di atas hanya digunakan oleh orang tua untuk memandu proses belajar anak.
ProgramPython Contoh Perulangan Bilangan Genap 2 4 6 8 10. Bilangan genap adalah bilangan yang habis dibagi dengan 2, atau biasa disebut sisa baginya adalah 0. Jadi pada program python kali ini ialah program untuk menampilkan bilangan genap dari 2,4,6,8,10. Pada artikel lainnya sudah ada dalam program c++.
Pengguna Brainly Pengguna Brainly Bab Bilangan GenapMatematika SD Kelas VIBilangan genap adalah bilangan yang habis dibagi 2Bilangan genap yang habis dibagi 4 adalah kelipatan 4Bilangan genap antara 1 dan 40 yang habis dibagi 4 = { 4, 8, 12, 16, 20, 24, 28, 32, 36 }
Jawaban D. 47. Pembahasan. Untuk menghitung banyaknya bilangan [1..100] yang habis dibagi 3 atau 5, kita perlu menghitung:. banyaknya bilangan bulat antara 1 sampai dengan 100 yang habis dibagi 3: floor (100 / 3) = 33; banyaknya bilangan bulat antara [1..100] yang habis dibagi 5: floor (100 / 5) = 20; banyaknya bilangan bulat antara [1..100] yang habis dibagi 3 dan 5: floor (100 / 15) = 6
Bilangan Ganjil Dan GenapPengertian Bilangan Ganjil dan Genap beserta Contohnya β Bilangan ganjil dan genap merupakan pengelompokan dari bilangan bulat, baik bilangan bulat positif maupun bilangan bulat negatif. Sehingga, bilangan ganjil dan bilangan genap adalah himpunan bagian dari bilangan bulat. Untuk lebih jelasnya, simak pembahasan berikut ini mengenai pengertian bilangan ganjil dan genap beserta contohnya itu bilangan ganjil? Bilangan ganjil adalah bilangan bulat yang tidak habis dibagi dua. Himpunan bilangan ganjil dilambangkan dengan huruf definisi lainnya, pengertian bilangan ganjil adalah bilangan bulat dalam bentuk 2n + 1, dimana n adalah bilangan bulat. Jika dituliskan, maka anggota himpunan bilangan ganjil adalah sebagai berikutL = {β¦, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, β¦}Untuk memudahkan dalam menentukan apakah suatu bilangan merupakan himpunan bilangan ganjil atau bukan, perhatikan ciri-ciri bilangan ganjil berikut iniTidak habis dibagi 2Berakhiran dengan angka 1, 3, 5, 7, 9ContohAngka 21 ganjil apa genap?PembahasanKita akan bahas melalui ciri-cirinya,21 2 = 10,5 tidak habis dibagi 2, karenan menghasilkan bilangan pecahan desimal21 berakhiran dengan angka 1Maka angka 21 adalah bilangan ganjilContohAngka 12 ganjil apa genap?PembahasanKita akan bahas melalui ciri-cirinya,12 2 = 6 habis dibagi 212 tidak berakhiran dengan angka 1, 3, 5, 7, 9Maka angka 12 bukanlah bilangan ganjil merupakan bilangan genapContoh Bilangan GanjilBilangan ganjil positifL = {1, 3, 5, 7, 9, β¦}Bilangan ganjil negatifL = {β¦, -9, -7, -5, -3, -1}Bilangan ganjil antara 1 dan 10L = {3, 5, 7, 9}Bilangan ganjil antara 10 dan 20L = {11, 13, 15, 17, 19}Bilangan ganjil positif kurang dari 15L = {1, 3, 5, 7, 9, 11, 13}Bilangan ganjil antara -10 dan 10L = {-9, -7, -5, -3, -1, 1, 3, 5, 7, 9}Bilangan ganjil 1-100L = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99}Pengertian Bilangan GenapBilangan genap adalah bilangan bulat yang habis dibagi dua. Himpunan bilangan genap dilambangkan dengan huruf definisi lainnya, pengertian bilangan genap adalah bilangan bulat dalam bentuk 2n, dimana n adalah bilangan bulat. Jika dituliskan, maka anggota himpunan bilangan genap adalah sebagai berikutN = {β¦, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, β¦}βSecara khusus, 0 merupakan bilangan genap.βUntuk memudahkan dalam menentukan apakah suatu bilangan merupakan bilangan genap atau bukan, perhatikan ciri-ciri bilangan genap berikut iniHabis dibagi 2Berakhiran dengan angka 0, 2, 4, 6, 8ContohAngka 18 genap apa ganjil?PembahasanKita bahas melalui ciri-cirinya,18 2 = 9 habis dibagi 218 berakhiran dengan angka 8Maka angka 18 adalah bilangan genapContohAngka 81 genap apa ganjil?PembahasanKita bahas melalui ciri-cirinya,81 2 = 40,5 tidak habis dibagi 2, karenan menghasilkan bilangan pecahan desimal81 tidak berakhiran dengan angka 0, 2, 4, 6, 8Maka angka 81 bukan bilangan genap merupakan bilangan ganjilContoh Bilangan GenapBilangan genap positifN = {2, 4, 6, 8, 10, β¦}Bilangan genap negatifN = {β¦, -10, -8, -6, -4, -2}Bilangan genap antara 1 dan 10N = {2, 4, 6, 8}Bilangan genap antara 10 dan 20N = {12, 14, 16, 18}Bilangan genap positif kurang dari 15N = {2, 4, 6, 8, 10, 12, 14}Bilangan genap antara -10 dan 10N = {-8, -6, -4, -2, 0, 2, 4, 6, 8}Bilangan genap 1-100N = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100}Demikianlah pembahasan mengenai pengertian bilangan ganjil dan genap beserta contohnya masing-masing. Semoga bermanfaat dalam mempelajari jenis-jenis bilangan Lagi Macam-Macam Bilangan Bulat Dan ContohnyaPengertian Bilangan Rasional Dan Irasional beserta ContohnyaBilangan Cacah, Bilangan Bulat, dan Bilangan AsliOperasi Hitung Bilangan Bulat Sifat, Rumus dan ContohnyaCara Membuat Garis Bilangan Dan Penggunaannya
Tentukanlahhasil penjumlahan semua bilangan genap yang lebih kecil dari empat juta dalam barisan Fibonacci seperti di atas. 402 + 40 + 41 = 40[40 + 1] + 41 angka ini ternyata habis dibagi 41, dan saat n = 41, 41Β² + 41 + 41 angka ini juga habis dibagi 41. Hasil yang serupa bisa didapatkan dengan angka 9 dan mengalikannya dengan 1, 2, 3
Waktu kita membagi kadang bingung, dengan angka yang banyak, bisa dibagi atau tidak ya. Sebenarnya ada cara yang mudah untuk mengetahuinya dan ga perlu menghitung dan mikir terlalu lama. Mau tahu, baca sampai selesai. BILANGAN HABIS DIBAGI 2 Suatu bilangan habis dibagi 2, ciri-cirinya adalah bilangan yang berakhiran berangka satuan 0, 2, 4, 6, 8. Dengan kata lain bilangan itu adalah bilangan genap. Contoh apakah 74 habis dibagi 2? Karena 74 merupakan bilangan genap Ingat rumus untuk bilangan genap. Rumus untuk bilangan genap adalah 2k untuk sebarang k bilangan bulat. Sedangkan untuk bilangan ganjil yaitu 2k-1 untuk sebarang k bilangan bulat. Karena 74 memenuhi rumus bilangan genap, maka 74 habis dibagi 2. BILANGAN HABIS DIBAGI 3 Suatu bilangan habis dibagi 3 apabila jumlah digit-digitnya habis dibagi 3. Contoh Apakah 213 habis dibagi 3? Karena 2 + 1 + 3 = 6 habis dibagi 3. Maka bilangan itu 213 habis dibagi 3. BILANGAN HABIS DIBAGI 4 Suatu bilangan dapat dibagi 4 apabila dua digit terakhir habis dibagi 4. Contoh Apakah 324 habis dibagi 4? Dua digit terakhir yaitu 24. Dan 24 habis dibagi 4. Sehingga 326 habis dibagi 4. Apakah 2006 habis dibagi 4? Tidak. Karena dua angka terahirnya yaitu 06. Sedangkan 06 tidak habis dibagi 4. Sehingga 2006 tidak habis dibagi 4. BILANGAN HABIS DIBAGI 5 Apabila bilangan tersebut berakhiran 0 atau 5 maka habis dibagi 5. Contoh Apakah 3255 habis dibagi 5? Digit terakhir adalah 5. Sehingga 3255 habis dibagi 5. BILANGAN HABIS DI BAGI 6 Ciri Bilangan yang habis dibagi 6 adalah bilangan yang habis dibagi 3 dan habis dibagi 2. Contoh apakah 234 habis dibagi 6? Karena 2 + 3 + 4 = 9 habis dibagi 3 dan bilangan itu genap. Maka 234 habis dibagi 6. BILANGAN HABIS DI BAGI 7 Bila satuannya dikalikan 2, dan menjadi pengurang dari yang tersisa dimana hasilnya habis dibagi 7, maka bilangan itu habis dibagi 7. Contoh apakah 5236 habis dibagi 7? Kita pisahkan 6 satuannya, kemudian 523 β 6 Γ 2 = 511. Apakah 511 habis dibagi 7? 51 β 1 x 2 = 49. Karena 49 habis dibagi 7 maka 5236 habis dibagi 7. BILANGAN HABIS DI BAGI 8 Apabila tiga digit terakhir habis dibagi 8. Contoh apakah 3125 habis dibagi 8? Tiga digit terakhir yaitu 125 habis dibagi 8. Sehingga 3125 habis dibagi 8. BILANGAN HABIS DI BAGI 9 Apabila jumlah angka-angkanya habis dibagi 9 maka bilangan tersebut habis dibagi 9. Contoh apakah 819 habis dibagi 9? Jumlah digit-digitnya yaitu 8 + 1 + 9 = 18 habis dibagi 9 sehingga 819 habis dibagi 9. BILANGAN HABIS DI BAGI 10 Jika angka satuannya adalah 0 maka bilangan tersebut habis dibagi 10. Contoh apakah 8190 habis dibagi 10? Angka satuan=0, maka 8190 habis dibagi 10. BILANGAN YANG HABIS DI BAGI 11 Bilangan habis dibagi 11 yaitu jika bilangan tersebut merupakan kelipatan 11. Ciri bilangan habis dibagi 11 yaitu jika jumlah digitnya yang berganti tanda habis dibagi 11. Contohnya Apakah 1234 habis dibagi 11? Maka yang kita lakukan adalah sebagai berikut. Karena 4 β 3 + 2 β 1 = 2 tidak habis dibagi 11, maka 1234 juga tidak habis dibagi 11. Apakah 803 habis dibagi 11? Karena 3 β 0 + 8 = 11 habis dibagi 11 maka 803 habis dibagi 11. BILANGAN YANG HABIS DIBAGI 13 Ciri bilangan habis dibagi 13 adalah bilangan asal dipisahkan satuannya kemudian dikalikan 9 multiplier dari 13. Dan bilangan yang setelah dipisahkan tadi dikurangi dengan 9 kali bilangan satuannya. Misalnya bilangan awal kita adalah abcdefg, maka ciri bilangan habis dibagi 13 adalah abcdef β 9g. Jika hasilnya habis dibagi 13, maka bilangan semula juga habis dibagi 13. Contoh Apakah 3419 habis dibagi 13? 341 β 99 = 341 β 81 = 260. Karena 260 habis dibagi 13, maka 3419 habis dibagi 13. Kita coba angka yangg lebih besar. Misal Apakah 12818 habis dibagi 13? 1281 β 98 = 1281 β 72 = 1209 120 β 99 = 120 β 81 = 39. 39 habis dibagi 13, maka 12818 habis dibagi 13. BILANGAN HABIS DI BAGI 15 Apabila angka satuannya adalah 0 atau 5 maka bisa dibagi 5. Jumlah angkanya habis dibagi 3. Contoh apakah 8190 habis dibagi 15? Angka satuan=0, Jumlah angkanya= 8+1+9+0=18 habis dibagi 3, maka 8190 habis dibagi 15. BILANGAN YANG HABIS DIBAGI 17 Ciri bilangan habis dibagi 17 adalah jika bilangan tersebut dipisahkan antara satuannya dan sisa angkanya, dimana jika sisa angkanya dikurangi dengan 5 kali satuannya habis dibagi 17. Contohnya apakah 153 habis dibagi 17? Langkah pertama yaitu memisahkan bilangan tersebut dengan satuannya. 153 menjadi 15 dan 3. Kemudian kita lakukan langkah pada syarat tersebut. 15 β 35 = 0. Karena 0 habis dibagi 17, maka 153 juga habis dibagi 17. Contoh lain yang lebih panjang yaitu apakah 5338 habis dibagi 17? Kita lakukan langkah-langkah yang telah diberikan sebelumnya. 533 β 85 = 493 49 β 35 = 34 Karena 34 habis dibagi 17, maka 5338 habis dibagi 17. BILANGAN HABIS DIBAGI 19 Ciri bilangan habis dibagi 19 yaitu jika satuannya dikalikan dua dan ditambahkan pada angka sisa angka semula yang dibuang satuannya habis dibagi 19. Contoh Apakah 209 habis dibagi 19? Secara perhitungan biasa, 209 habis dibagi 19. Karena 19 x 11 adalah 209. Sekarang bagaimana jika kita menggunakan ciri bilangan habis dibagi 19 menggunakan cara yang telah disebutkan di atas. Kita perhatikan angka 209. Angka tersebut satuannya kita pisah. Diperoleh angka-angka baru yaitu 20 dan 9. Kemudian langkah selanjutnya yaitu angka satuan kita kalikan dua dan kita jumlahkan dengan angka yang lain yang telah dipisah tadi. Diperoleh, 20 + 92 = 28. Karena 38 habis dibagi 19, maka bilangan asal tadi juga habis dibagi 19. Sehingga, 209 habis dibagi 19. Kita lanjutkan untuk contoh dengan angka yang lebih besar. Apakah 9937 habis dibagi 19? Kita lakukan langkah-langkah yang telah diberikan tadi. 933 + 72 = 1007. Tentunya sekarang kita dapatkan angka yang lebih kecil. Untuk mengecek apakah 1007 habis dibagi 19, maka kita lakukan langkah yang sama. Dengan cara yang sama, 100 + 72 = 144. Kita lanjutkan dengan mengecek apakah 114 habis dibagi 19. Kita peroleh, 11 + 42 = 19. Karena 19 habis dibagi 19, maka 114 habis dibagi 19. Dan diperoleh 1007 habis dibagi 19. Dan akhirnya 9937 juga habis dibagi 19.
Nahbegitu juga jika anda ingin menampilkan deret bilangan genap dari 1 - 20, atau dari 1 - 50, atau cara menampilkan bilangan genap dari 1 - 30, free!!!. Tentukan sendiri batas angkanya. Baiklah kita langsung membuat script atau coding program java dalam menampilkan bilangan genap 2 4 6 8 10.
1. Jumlah semua bilangan asli diantara 1 dan 100 yang habis dibagi 4 tetapi tidak habis dibagi 3 adalah β¦. A. 432 B. 768 C. 786 D. 1200 E. 1218 Soal ini masuk ke dalam B. Kemampuan Numerik. Bilangan antara 1 dan 100 yang berarti 1 dan 100 tidak ikut dihitung yang habis dibagi 4 4, 8, 12, β¦, 96 Ini termasuk ke dalam deret Aritmetika, dengan a suku pertama = 4, b beda = 4, dan suku terakhir Un = 96. dimana, Un = a + n-1b 96 = 4 + 4n β 4 4n = 96 n = 24 Sn = n/2 a + Un S24 = 24/2 4 + 96 S24 = = 1200 βββββββββββ Bilangan antara 1 dan 100 yang habis dibagi 3 yaitu 3, 6, 9, 12, β¦, 99. karena soal diminta tidak habis dibagi 3, kita harus mencari bilangan habis dibagi 3 dan sekaligus bilangan dapat dibagi 4, untuk mengurangi hasil jumlah bilangan habis dibagi 4 sehingga didapatlah βbilangan yang habis dibagi 4 tetapi tidak habis dibagi 3β KPK antara bilangan 4 dan 3 yaitu 12 sehingga barisan bilangan habis dibagi 3 yang juga bilangan habis dibagi 4 adalah sbb 12, 24, 36, β¦, 96. dengan a = 12, b = 12, Un = 88 Un = a + n-1b 96 = 12 + 12n β 12 12n = 96 n = 8 Sn = n/2 a + Un S8 = 8/2 12 + 96 S8 = 4 . 108 = 432 Jadi, Jumlah semua bilangan asli diantara 1 dan 100 yang habis dibagi 4 tetapi tidak habis dibagi 3 adalah 1200 β 432 = 768 jawaban B. 768 2. Indonesia β Australia = 12 β 36, Sulawesi β Jeneponto = β¦ A. -88 B. -13 C. -24 D. 3 E. 44 Pembahasan INDONESIA β AUSTRALIA [Konsonan β Vokal] β [Konsonan β Vokal] [14 + 4 + 14 + 19] β [9 + 15 + 5 + 9 + 1] β [19 + 20 + 18 + 12] β [1 + 21 + 1 + 9 + 1] [51] β [39] β [69] β [33] 12 β 36 SULAWESI β JENEPONTO [Konsonan β Vokal] β [Konsonan β Vokal] [19 + 12 + 23 + 19] β [21 + 1 + 5 + 9] β [10 + 14 + 16 + 14 + 20] β [5 + 5 + 15 + 15] [73] β [36] β [74] β [40] 37 β 34 = 3 Jadi, jawab D. 3 3. Ibrahim = 8, Ismail = 7. Nilai Ramdani = β¦ A. 8 B. 7 C. 24 D. 59 E. 44 Pembahasan IBRAHIM -> Terdiri dari 7 huruf = 8. Berarti 7 + 1 = 8 ISMAIL -> Terdiri dari 6 huruf = 7. Berarti 6 +1 = 7 RAMDANI -> Terdiri dari 7 huruf = β¦ Berarti 7 +1 = 8 Jawaban A. 8 4. Dea = 10, Duta = 46. Nilai Crosby = β¦ A. 75 B. 69 C. 82 D. 39 E. 94 Pembahasan D = 4 E = 5 A = 1 DEA = 4 + 5 + 1 = 10 D = 4 U = 21 T = 20 A = 1 DUTA = 4 + 21 + 20 + 1 = 46 CROSBY = 3 + 19 + 15 +19 + 2 + 25 = 82 Jadi, jawab adalah C. 82 5. Berat jenis air yang paling besar adalah pada suhuβ¦ A. 0 derajat B. 100 derajat C. 4 derajat D. 273 derajat E. -4 derajat Pembahasan Misteri air terungkap ketika para ilmuwan fisika mempelajari tentang suhu dan kalor. Mereka mengamati, bahwa semua zat akan memuai jika dipanaskan. Tetapi air mempunyai keanehan dalam hal ini. Air ternyata malah menyusut jika dipanaskan dari suhu 0 ke 4 derajat Celsius. Ketika air menyusut massa air tetap, sedangkan volumenya berkurang, sehingga massa jenis air akan bertambah. Ingat massa jenis = massa/volume Sifat anomali air adalah keanehan air yang menyusut ketika dipanaskan antara suhu 0 sampai 4 derajat Celsius. Massa jenis air terbesar diperoleh pada suhu 4 derajat Celsius, karena pada suhu ini air memiliki volume yang paling kecil. Berat jenis adalah perbandingan relatif antara massa jenis sebuah zat dengan massa jenis air murni. Air murni bermassa jenis 1 g/cmΒ³ atau 1000 kg/mΒ³. Berat jenis tidak mempunyai satuan atau dimensi. Berat jenis mempunyai rumusn atau w/v dengan satuan n/m^3 dengan m = massa, g = gravitasi, v = volume dan w = weight berat. Dapat disimpulkan berat jenis sebanding dengan massa jenis. Sehingga, berat jenis air yang paling besar adalah pada suhu 4 derajat Jawab C. 4 derajat 6. 1 β 3 β 5 β 15 β 17 β β¦. β β¦ A. 19, 21 B. 31, 37 C. 51, 53 D. 20, 32 E. 21,34 Pembahasan 1 x 3 = 3 β- 3+2 = 5 5 x 3 = 15 β- 15+2 = 17 17 x 3 = 51 β- 51+2 = 53 53 x 3 = 159 β- 159+2 = 161 Jadi, jawab adalah C. 51, 53 7. 8 β 32 β 16 β 24 β β¦ A. 128, 64 B. 64, 128 C. 72, 120 D. 120, 72 E. 123,74 Pembahasan 8 x 2 = 16 [2] 8 x 3 = 24 [3] 8 x 4 = 32 q q β> r βββ Kesimpulan p β> r Jika nasi goreng disajikan, maka buah-buahan disajikan. Akan tetapi kesimpulan tersebut tidak ada pada option jawaban, sehingga yang kita cari adalah pernyataan yg ekuivalen atau setara dgn pβ> r Sehingga p β> r = ~r β> ~p Ekuivalensi atau setara. ini juga menjadi rumus kontraposisi Jadi kesimpulannya p β> r = ~r β> ~p = Jika buah-buahan tidak disajikan maka nasi goreng tidak disajikan ============================== =================== Rumus ekuivalensi pernyataan setara yang perlu teman-teman ingat p β> q = ~p V q = ~q β> ~p 9. MENGUAP β¦ = β¦ SAKIT A. panas badan B. lelah β dokter C. mengantuk β demam D. tidur β istirahat E. tempat tidur β obat Pembahasan Buat menjadi sebuah kalimat Menguap tanda mengantuk, sedangkan demam tanda sakit Jawab C. mengantuk β demam 10. Bu Revi membagikan tanah warisan sebnyak 5 ha. kepada 5 org anaknya. Rana mendapat 26% tanah, Rini mendapat 85 are, Reni mendpat 12/15 dr Rani, Rina mendapatkan dua kali dr Rani. Siapa yang lebih kaya dari Rini? A. Rana dan Reni B. Rana dan Rani C. Rana dan Rina D. Rina dan Reni E. Hanya Rana saja Pembahasan 5 ha = 500 are Rana = 26% . 500 are = 130 are Rini = 85 are Reni = 12/15 . Rani Rina = 2 . Rani Rani = Rani Reni Rani Rina = 12 15 30 = 4 5 10 Reni = 4/19 . 285 = 60 Rani = 5/19 . 285 = 75 Rina = 10/19 . 285 = 150 Jadi, yang lebih kaya dari Rini adalah Rana dan Rina. Jawab C. Rana dan Rina 11. Antonim insinuasi A. Terang2an B. Caci-maki C. Rayuan D. Pujian E. Sembunyi-sembunyi Pembahasan inβ’siβ’nuβ’aβ’si n tuduhan tersembunyi, tidak terang-terangan, atau tidak langsung; sindiran; Jadi, antonim lawan makna/lawan kata dari insiuasi adalah A. Terang2an 12. Jika x = 2y, y = 3z, dan x y z = 3888, maka A. x 8 x 7 = 56 7 adalah 42 -> 7 x 6 = 42 6 adalah 30 -> 6 x 5 = 30 5 adalah 20 -> 5 x 4 = 20 4 adalah 12 -> 4 x 3 = 12 3 adalah -> 3 x 2 = 6 jadi, jawab adalah B. 6 15. Amir punya uang setengah uang Budi. Jika Budi memberi 500 ke Amir, maka Amir punya uang 400 lebih sedikit dari Budi. Berapa jumlah uang mereka? A. 2300 B. 2700 C. 4200 D. 4800 E. 5100 Pembahasan B = x -> x β 500 A = 1/2 x -> 1/2x + 500 A β B = 400 x β 500 β 1/2x + 500 = 400 1/2x β 1000 = 400 1/2x = 1400 A x = 2800 B Sehingga A = 1400 + 500 = 1900 Sehingga B = 2800 β 500 = 2300 Jumlah uang mereka adalah A + B = 1900 + 2300 = 4200 jawab adalah C. 4200 16. Kuman penyakit = Api A. Arang B. Panas C. Merah D. Kebakaran Pembahasan untuk mudahnya, buat menjadi sebuah kalimat, Kuman menyebabkan penyakit, sedangkan Api menyebabkan kebakaran Jadi, jawab adalah D. Kebakaran 17. Seorang pedagang menjual kain dengan harga 80 ribu dan memperoleh laba 25% dari harga beli. Berapakah harga beli kain? A. 100 rb B. 96 rb C. 64 rb D. 80 rb E. 120 rb Pembahasan ini dengan melogikan saja sudah bisa menjawab. Harga beli pasti lebih rendah di banding kan harga Jual kan untuk laba? Harga jual saja 80 ribu, pasti harga belinya dibawah 80 ribu. dan ternyata opsi dibawah 80 ribu cuma 1, ya udah itu jawabnya
fprjxu. 7768eagqne.pages.dev/257768eagqne.pages.dev/3957768eagqne.pages.dev/3937768eagqne.pages.dev/1987768eagqne.pages.dev/3767768eagqne.pages.dev/2127768eagqne.pages.dev/1257768eagqne.pages.dev/38
bilangan genap antara 1 dan 40 yang habis dibagi 4